Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2012-2013 - Sở GD&ĐT Hải Dương
Câu 3 (2,0 điểm):
a) Với a, b là các số nguyên. Chứng minh rằng nếu chia hết cho 5 thì chia hết cho 5.
b) Cho phương trình với a, b là các số hữu tỉ. Tìm a, b biết là nghiệm của phương trình.
Câu 4 (3,0 điểm):
Cho 3 điểm A, B, C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không nằm trên đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K.
a) Chứng minh 4 điểm O, M, N, I cùng nằm trên một đường tròn.
b) Chứng minh điểm K cố định khi đường tròn tâm O thay đổi.
c) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm ME.
Tóm tắt nội dung tài liệu: Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2012-2013 - Sở GD&ĐT Hải Dương
ĐỀ THI CHÍNH THỨC SỞ GD&ĐT HẢI DƯƠNG KÌ THI CHỌN HỌC SINH GIỎI TỈNH LỚP 9 THCS NĂM HỌC 2012 – 2013 MÔN THI: TOÁN Thời gian làm bài: 150 phút (không kể thời gian giao đề) Ngày thi: 27/03/2013 ( Đề thi gồm có 01 trang ) Câu 1 (2,0 điểm): a) Rút gọn biểu thức: với b) Cho . Tính giá trị của biểu thức: B = x5 – 3x4 – 3x3 + 6x2 – 20x + 2018 Câu 2 (2,0 điểm): Giải phương trình b) Gi¶i hÖ ph¬ng tr×nh sau: Câu 3 (2,0 điểm): a) Với a, b là các số nguyên. Chứng minh rằng nếu chia hết cho 5 thì chia hết cho 5. b) Cho phương trình với a, b là các số hữu tỉ. Tìm a, b biết là nghiệm của phương trình. Câu 4 (3,0 điểm): Cho 3 điểm A, B, C cố định nằm trên một đường thẳng d (B nằm giữa A và C). Vẽ đường tròn tâm O thay đổi nhưng luôn đi qua B và C (O không nằm trên đường thẳng d). Kẻ AM và AN là các tiếp tuyến với đường tròn tâm O tại M và N. Gọi I là trung điểm của BC, AO cắt MN tại H và cắt đường tròn tại các điểm P và Q (P nằm giữa A và O), BC cắt MN tại K. a) Chứng minh 4 điểm O, M, N, I cùng nằm trên một đường tròn. b) Chứng minh điểm K cố định khi đường tròn tâm O thay đổi. c) Gọi D là trung điểm HQ, từ H kẻ đường thẳng vuông góc với MD cắt đường thẳng MP tại E. Chứng minh P là trung điểm ME. Câu 5 (1,0 điểm): Cho với n. Chứng minh rằng: . ------------- HẾT ------------ Họ và tên thí sinh: .. Số báo danh . Chữ kí giám thị 1 .. Chữ kí giám thị 2 ..
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_tinh_lop_9_thcs_mon_toan_nam_hoc_2.doc