Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2010-2011 - Sở GD&ĐT Hải Dương (Có đáp án)

Câu 3 (2,0 điểm)

  1. Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện sau :

là số hữu tỉ và là số nguyên tố.

  1. Tìm nghiệm nguyên của phương trình .

Câu 4 (3,0 điểm) 

      Cho tam giác ABC nhọn có trung tuyến CM. Các đường cao AH, BD, CF cắt nhau tại I. Gọi E là trung điểm của DH. Đường thẳng qua C và song song với AH cắt BD tại P; đường thẳng qua C và song song với BD cắt AH tại Q.

  1. Chứng minh PI.AB = AC.CI
  2. Gọi (O) là đường tròn ngoại tiếp tam giác CDH. Chứng minh MD là tiếp tuyến của đường tròn (O).

c) CE cắt đường tròn ngoại tiếp tam giác ABC tại R (R khác C); CM cắt đường tròn (O) tại K (K khác C). Chứng minh AB là đường trung trực của đoạn KR.

Câu 5 (1,0 điểm) 

  1. Chứng minh thỏa mãn .
doc 1 trang Huy Khiêm 02/01/2024 3900
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2010-2011 - Sở GD&ĐT Hải Dương (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2010-2011 - Sở GD&ĐT Hải Dương (Có đáp án)

Đề thi chọn học sinh giỏi tỉnh lớp 9 THCS môn Toán - Năm học 2010-2011 - Sở GD&ĐT Hải Dương (Có đáp án)
ĐỀ THI CHÍNH THỨC
SỞ GD&ĐT HẢI DƯƠNG
KÌ THI CHỌN HỌC SINH GIỎI TỈNH
LỚP 9 THCS NĂM HỌC 2010 – 2011
MÔN THI: TOÁN 
Thời gian làm bài: 150 phút (không kể thời gian giao đề)
Ngày thi: 27/03/2011 (Đề thi gồm có 01 trang)
Câu 1 (1,5 điểm)
Phân tích đa thức thành nhân tử.
Câu 2 (2,5 điểm)
Giải phương trình .
Gi¶i hÖ ph­¬ng tr×nh 
Câu 3 (2,0 điểm)
Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện sau :
 là số hữu tỉ và là số nguyên tố.
Tìm nghiệm nguyên của phương trình .
Câu 4 (3,0 điểm) 
	Cho tam giác ABC nhọn có trung tuyến CM. Các đường cao AH, BD, CF cắt nhau tại I. Gọi E là trung điểm của DH. Đường thẳng qua C và song song với AH cắt BD tại P; đường thẳng qua C và song song với BD cắt AH tại Q.
Chứng minh PI.AB = AC.CI
Gọi (O) là đường tròn ngoại tiếp tam giác CDH. Chứng minh MD là tiếp tuyến của đường tròn (O).
c) CE cắt đường tròn ngoại tiếp tam giác ABC tại R (R khác C); CM cắt đường tròn (O) tại K (K khác C). Chứng minh AB là đường trung trực của đoạn KR.
Câu 5 (1,0 điểm) 
Chứng minh thỏa mãn .
Cho a, b, c là các số dương thỏa mãn điều kiện . Chứng minh 
.
Hết
Họ và tên thí sinh:Số báo danh:..
Chữ kí của giám thị 1:Chữ kí của giám thị 2:.

File đính kèm:

  • docde_thi_chon_hoc_sinh_gioi_tinh_lop_9_thcs_mon_toan_nam_hoc_2.doc
  • docDap an HSG Toan (2010-2011).doc