Đề thi chọn học sinh giỏi môn Toán Lớp 8 - Năm học 2012-2013 - Phòng GD&ĐT Bình Giang (Có đáp án)
Câu 3 (2,0 điểm).
a) Chứng minh 5a2 + 15ab – b2 chia hết cho 49 thì 3a + b chia hết cho 7 với a, b nguyên.
b) Tìm các số nguyên x, y biết: xy -2x +3y =13
Câu 4 (3,0 điểm).
Cho tam giác nhọn ABC, các đường cao BE, CF cắt nhau tại H
- Chứng minh
- Chứng minh BH.BE + CH.CF = BC2
- Gọi M là trung điểm của BC, đường thẳng qua H cắt AB, AC thứ tự tại N,
P sao cho HN = HP. Chứng minh MH vuông góc với NP
Câu 5 (1 điểm).
Tìm giá trị nhỏ nhất của
Bạn đang xem tài liệu "Đề thi chọn học sinh giỏi môn Toán Lớp 8 - Năm học 2012-2013 - Phòng GD&ĐT Bình Giang (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề thi chọn học sinh giỏi môn Toán Lớp 8 - Năm học 2012-2013 - Phòng GD&ĐT Bình Giang (Có đáp án)
ĐỀ THI CHÍNH THỨC PHÒNG GD&ĐT BÌNH GIANG KÌ THI CHỌN HỌC SINH GIỎI NĂM HỌC 2012-2013 MÔN THI: TOÁN LỚP 8 Thời gian làm bài: 150 phút (không kể thời gian giao đề) Câu 1 (2 điểm). a) Phân tích đa thức thành nhân tử A = a2(b - c) + b2(c - a) + c2(a - b). b) Cho x2 – 4x + 1 = 0. Tính giá trị của Câu 2 (2,0 điểm). Giải phương trình Giải bất phương trình Câu 3 (2,0 điểm). a) Chứng minh 5a2 + 15ab – b2 chia hết cho 49 thì 3a + b chia hết cho 7 với a, b nguyên. b) Tìm các số nguyên x, y biết: xy -2x +3y =13 Câu 4 (3,0 điểm). Cho tam giác nhọn ABC, các đường cao BE, CF cắt nhau tại H Chứng minh Chứng minh BH.BE + CH.CF = BC2 Gọi M là trung điểm của BC, đường thẳng qua H cắt AB, AC thứ tự tại N, P sao cho HN = HP. Chứng minh MH vuông góc với NP Câu 5 (1 điểm). Tìm giá trị nhỏ nhất của HẾT PHÒNG GD&ĐT BÌNH GIANG ĐÁP ÁN VÀ HƯỚNG DẪN CHẤM HSG MÔN TOÁN LỚP 8 –NĂM HỌC 2012-2013 Lưu ý: Thí sinh làm theo cách khác đúng vẫn cho điểm tối đa. Câu Phần Nội dung Điểm Câu 1 a A = a2(b - c) + b2(c - a) + c2(a - b) = a2b –a2c +b2c- ab2 + c2(a – b) 0.25 = ab(a – b) –c(a-b)(a + b) + c2(a – b) 0.25 = (a – b)(ab –ca -bc+ c2) 0.25 = (a – b)(a-c)(b-c) 0.25 b x2 – 4x + 1 = 0 0,25 0,5 0,25 Câu 2 a 0,25 0,25 KL 0,5 b 0.25 0.5 , KL 0.25 Câu 3 a 5a2 + 15ab – b2 chia hết cho 49a2 + 3ab – 10b2 chia hết cho 49 0.25 (a + 5b)(a - 2b) = 0 chia hết cho 49 0.25 Nếu 0.25 , KL 0.25 b xy -2x +3y =13 (x+3)(y-2) =7 mà x, y nguyên nên ta có 0.5 x =4, y=3 hoặc x=-2, y= 9 hoặc x =-10, y=1 hoặc x=-4, y= -5 0.5 Câu 4 a Chứng minh ABEACF 0.25 Chứng minh AEFABC ( c.g.c) 0.5 0.25 b Kẻ đường cao AD Chứng minh BDHBCE 0.5 Chứng minh CDHCFB 0.25 0.25 c Qua B kẻ đường thẳng song song với NP cắt AD tại K, cắt AC tại I Chứng minh KB = IK 0.25 Chứng minh MK// AC MKBE 0.25 Chứng minh K là trực tâm của tam giác BMHMHBK 0.25 Suy ra MH NP 0.25 Câu 5 0.25 0.25 0.25 0.25 ----------------------------- HẾT ----------------------------
File đính kèm:
- de_thi_chon_hoc_sinh_gioi_mon_toan_lop_8_nam_hoc_2012_2013_p.doc